CREATININA (ENZIMÁTICA)

Reactivo enzimático para la determinación fotométrica de punto final de la Creatinina en suero, plasma y orina.

Para uso en el diagnóstico in Vitro. Apto para usar en autoanalizador.

SIGNIFICANCIA CLÍNICA

La Creatinina es un producto de desecho que se forma en el músculo por la degradación de la fosfo-creatina, en cantidad proporcional a la masa y función muscular. La Creatinina es eliminada del organismo por vía renal, siendo retirada del plasma por filtración glomerular. Su medición es útil en el diagnóstico de diversas nefropatías, y su control permanente es de gran utilidad en aquellos pacientes que requieren de diálisis.

FUNDAMENTOS DEL MÉTODO

La creatinina, en presencia de creatinina amidohidrolasa se convierte en creatina. Posteriormente la creatina es descompuesta en sarcosina + urea por acción de la enzima creatina amidinohidrolasa. Pasos ulteriores vinculados con enzimas con sarcosina oxidasa dan una lectura de cromógeno coloreado a 545 nm. en cantidad proporcional a la concentración de creatinina presente en la muestra.

REACTIVOS

Conservados entre 2ºC y 8 ºC. y protegidos de la luz, son estables hasta la fecha de caducidad indicada en las etiquetas. Una vez abiertos son estables durante 8 semanas a una temperatura de 2 a 8ºC.

-Reactivo 1:

Buffer	pH 7,2
Creatinina amidinohidrolasa	>12000 U/I
Sarcosina Oxidasa	>4000 U/I
ESPMT	>0.24mM
Ascorbato oxidasa, estabilizantes,	
agentes tensioactivos y preservantes no reactivos	C.S.

-Reactivo 2:

pH 7,5
>135000 U/I
>2000 U/I
1.5 mM
7.7 mM
C.S.

Preparación del Reactivo de Trabajo: Los reactivos se proveen listo para su uso. Descartar el reactivo en caso de observar turbidez, podría ser una indicación de deterioro.

MUESTRA

Utilizar suero fresco transparente, libre de hemólisis o plasma con heparina de litio u orina. La orina debe recolectarse sin aditivos. Se sugiere diluir la orina 1:5 con agua desionizada y multiplicar el resultado por el factor de dilución. De ser necesario es posible utilizar diluciones mayores pudiendo trabajar con diluciones 1:10 dependiendo del equipo autoanalizador que se utilice, de acuerdo a adaptaciones disponibles. En este caso, al multiplicar por el nuevo factor de dilución la linealidad se extiende a 300 mg/dL.

Las muestras con una concentración de creatinina que supere la linealidad deben diluirse con suero fisiológico en el caso de suero o plasma y con agua desionizada en el caso de orina.

Las muestras pueden almacenarse a una temperatura entre 2ºC y 8° C durante 7 días y a -20ºC durante períodos más prolongados.

MATERIAL NECESARIO NO INCLUIDO

Espectrofotómetro manual o automático o fotocolorímetro de filtros con cubeta termoestable, capaz de medir absorbancia a 545 nm, baño termoregulado, cronómetro, pipetas, calibrador y sueros controles.

TÉCNICA

Llevar el reactivo a la temperatura de reacción (37° C.) antes de realizar el ensavo.

		Desconocido	Blanco
Muestra o Calibrador	(mL)	0.01	
Agua desionizada	(mL)		0.01
Reactivo 1	(mL)	0.15	0.15
Reactivo 2	(mL)	0.05	0.05

Mezclar e incubar a 37°C por 10 minutos. Leer la absorbancia a 545 nm. contra blanco.

Adaptaciones para la aplicación de este reactivo en autoanalizadores están disponibles a solicitud. Es responsabilidad del laboratorio validar esta aplicación.

CALIBRACIÓN

- En la calibración se recomienda utilizar calibrador sérico VALTROL-C II (código 210-130A), proceder de igual forma que con las muestras.
- Se recomienda recalibrar en cualquier momento que se evidencie alguno de estos acontecimientos:
 - El lote de reactivo cambia
 - Se realiza un mantenimiento preventivo del equipo
 - Los valores de control han cambiado o se encuentran fuera de escala.

CÁLCULOS

Factor = Concentración Calibrador	
Abs. Calibrador	
Creatinina (mg/dL) = Factor x Abs. Desc	

Clearance = Crea, en orina (mg/dL) x Vol. orina 24 H. (mL)
Creatinina en suero (mg/dL) x 1440

CONTROL DE CALIDAD

- Es conveniente analizar junto con las muestras sueros controles valorados para Creatinina por este método. Se recomienda la utilización de los sueros controles VALTROL-N (código 210-100) y VALTROL-P (código 210-110) o MULTIVALTROL (código 210-300).
- Si los valores obtenidos para los controles se encuentran fuera del rango de tolerancia, revisar el instrumento, el reactivo y el calibrador.
- Cada laboratorio debe disponer de su propio Control de Calidad y establecer las correcciones necesarias en caso de que no se cumpla con las tolerancias permitidas para los controles.

ADVERTENCIAS Y MEDIDAS DE PRECAUCIÓN:

- Los volúmenes indicados pueden ser alterados proporcionalmente sin alterar los resultados.
- Presencia de turbidez de los reactivos podría ser indicación de deterioro. No se recomienda su uso en estas condiciones.
- Consultar en nuestra página WEB la ficha de seguridad de este reactivo y observar todas las medidas de precaución necesarias para la manipulación y eliminación de residuos.
- En autoanalizadores debe utilizarse contenedores de reactivos
 nuevos
- Utilizar los reactivos guardando las precauciones habituales de trabajo en el laboratorio de análisis clínicos.

ESPECIFICACIONES DE DESEMPEÑO:

Especificidad analítica (CLSI EP7) ⁽²⁾: se aplicó un criterio de relevancia de más de un 10% de la desviación de la media de control.

-Interferencias en suero: No se observó interferencia con la hemoglobina hasta 1g/L, lipemia hasta 1000 mg/dL, bilirrubina no conjugada hasta 16 mg/dL, bilirrubina conjugada hasta 40 mg/dL y ácido ascórbico hasta 3000 μg/dL.

-Interferencias en orina: No se observó interferencia con la hemoglobina hasta 1g/L, lipemia hasta 1000 mg/dL, bilirrubina no conjugada hasta 40 mg/dL, bilirrubina conjugada hasta 40 mg/dL y ácido ascórbico hasta 3000 µg/dL.

Otros medicamentos y sustancias podrían interferir (3).

Límites significativos (CLSI EP6) (2).

-Suero y plasma: La linealidad es de 30.00 mg/dL. El límite inferior de detección es de 0 mg/dL y el límite de cuantificación es de 0.03mg/dL. Estos datos caen dentro de los límites significativos de entre 0.03 y 30.0 mg/dL.

-Orina: La linealidad es de 175.00 mg/dL. El límite inferior de detección es de 0 mg/dL y el límite de cuantificación es de 0.02mg/dL.. Estos datos caen dentro de los límites significativos de entre 0.02 y 175.00 mg/dL. Se sugiere diluir la orina 1:5 con agua desionizada y multiplicar el resultado por el factor de dilución. De ser necesario es posible utilizar diluciones mayores

Estudios de precisión (CLSI EP5) (2).

La precisión total se recogió en dos concentraciones de controles de suero y dos concentraciones de controles de orina en 40 series realizadas durante 20 días, n= 80.

Suero:

Tipo de Imprecisión	Nivel Normal		Nivel Alto	
	Media	CV%	Media	CV%
Repetibilidad		1,50%		1,08%
Entre Corrida	0,79	0,85%	3,60	0,00%
Entre Día		0,33%		0,77%
Precisión Intermedia		1,75%		1,31%

Orina:

Tipo de Imprecisión	Nivel Normal		Nivel Alto	
	Media	CV%	Media	CV%
Repetibilidad		1,01%		1,44%
Entre Corrida	82,11	0,37%	188,24	1,20%
Entre Día		0,44%		0,00%
Precisión Intermedia		1,16%		1,62%

Estos datos han sido obtenidos utilizando un autoanalizador. Los resultados pueden variar al cambiar de instrumento o al realizar el procedimiento manualmente.

RANGOS DE REFERENCIA (1)

Cada laboratorio debe establecer sus propios rangos de referencia en función de la población de pacientes. Los rangos de referencia que se enumeran a continuación están tomados de la bibliografía existente.

Suero/Plasma Hombres: ≤ 1.2 mg/dL
Mujeres: ≤ 1.0 mg/dL
1° orina de la mañana Hombres: 40-280 mg/dL
Mujeres: 30-230 mg/dL

PRESENTACIONES DISPONIBLES

CÓDIGO	CONTENIDO	
300095	Reactivo 1	2 x 36 mL
	Reactivo 2	2 x 12 mL
200095	Reactivo 1	2 x 36mL
	Reactivo 2	2 x 12 mL

BIBLIOGRAFÍA

- 1. Heil, W., Koberstein, R., Zawta, B. Reference Ranges for Adults and Children, Roche Diagnostics, Mannheim, 2002.
- 2. CLSI Method Evaluation Protocols, Clinical and Laboratory Standards Institute, Wayne, PA.
- 3. Young, D.S., Effects of Drugs on Clinical Laboratory Tests, AACC Press, Washington, Third Edition, 1990.

REV Nº 3 12-2023